Optical Resolution of a Heteropolymolybdate Anion

Tomoharu Ama, Jinsai HIDAKA and Yoichi SHIMURA

Department of Chemistry, Faculty of Science, Osaka University, Toyonaka, Osaka

(Received May 22, 1970)

Shimura¹⁾ studied the electronic absorption spectrum of a dark olive green heteropolymolybdate containing cobalt(III) in a ratio of Co: Mo= 1:5, and concluded that the heteropoly anion contains two or more central cobalt(III) atoms with a linkage of Co^{III} —O—Co^{III}. Recently, Evans and Showell²⁾ determined the crystal structure of the ammonium salt of this anion and proved the dimeric structure of the anion, $[H_4Co_2Mo_{10}-O_{38}]^{6-}$ with the two CoO_6 octahedra sharing two oxygens. They showed that the dicobalt(III)-decamolybdate(VI) anion has a point group symmetry D_2 , and that it might be possible to resolve the complex ion into the optical antipodes.

We have succeeded in the optical resolution as follows. To a solution of $(NH_4)_6[Co_2Mo_{10}O_{34}-(OH)_4]\cdot 7H_2O$ (1.0 g, 0.5 mmol, in 1000 ml of water) was added a solution of $(+)_{589}$ -[Co en₃]-Br₃·H₂O (0.25 g, 0.5 mmol, in 200 ml of water). After the solution had been kept at 55°C for 4 hr, the less soluble dark yellowish green diastereomer deposited was collected by filtration.

Found: C, 6.20; H, 3.03; N, 7.19%. Calcd for $(+)_{589}$ -[Co en₃]₂· $(+)_{589}$ -[Co₂Mo₁₀O₃₄(OH)₄]·9H₂O: C, 6.18; H, 3.00; N, 7.21%. The diastereomer was stirred with the cation-exchange resin (Dowex 50 W×8, 200—400 mesh, NH₄+ form) in water. After the resin had been filtered off, ammonium chloride was dissolved in the green filtrate. The solution was kept in a refrigerator overnight in order to complete the crystallization of the optically active isomer. [α]₅₅₉=+100°.

Found: H, 1.99; N, 4.42%. Calcd for $(+)_{588}$ - $(NH_4)_6[Co_2Mo_{10}O_{34}(OH)_4]\cdot 5H_2O\colon$ H, 2.03; N, 4.45%.

The electronic absorption and circular dichroism (CD) spectra are shown in Fig. 1. Four CD bands, (-), (+), (-) and (-) listing from the

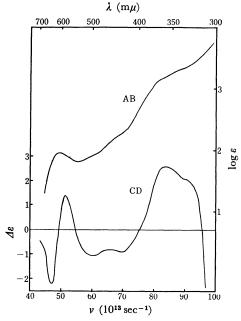


Fig. 1. Absorption AB and CD curves of $(+)_{589}$ - $(NH_4)_6[Co_2Mo_{10}O_{34}(OH)_4] \cdot 5H_2O$.

longer wavelength side, are observed in the region of d-d absorption bands of the $(+)_{589}$ isomer. The isomer shows two rather strong CD bands in the region of near ultraviolet absorption band, which may be assigned to a charge-transfer band characteristic to the bridging oxygen ligands in the linkage of Co^{III} OCo^{III}. Similar CD bands have also been reported for some tetranuclear Co(III) complexes containing OH-bridges.³⁾

This heteropolymolybdate anion appears to be the first heteropoly complex which has been optically resolved.

¹⁾ Y. Shimura, H. Ito and R. Tsuchida, Nippon Kagaku Zasshi, 75, 560 (1954).

²⁾ H. T. Evans, Jr., and J. S. Showell, J. Amer. Chem. Soc., 91, 6881 (1969).

³⁾ S. F. Mason and J. W. Wood, Chem. Commun., 1967, 209.